4.7 Article

A global kinetic model for cometary comae:: The evolution of the coma of the Rosetta target comet churyumov-gerasimenko throughout the mission

期刊

ASTROPHYSICAL JOURNAL
卷 685, 期 1, 页码 659-677

出版社

IOP PUBLISHING LTD
DOI: 10.1086/590376

关键词

comets : general; comets : individual (67P/Churyumov-Gerasimenko); methods : numerical; methods : statistical

向作者/读者索取更多资源

The Rosetta spacecraft is en route to comet 67P/Churyumov-Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Model studies of the coma will be required not only for planning of the mission and interpretation of spacecraft data, but also for an expectedly large amount of complementary remote observational data that will be obtained in the meantime. A full-scale simulation of the coma under conditions occurring during the mission can be done only on the basis of a kinetic model. In this work we present a newly developed direct simulation Monte Carlo model of a multispecies coma, where components of the coma are coupled through momentum exchange and photochemical processes, and its application to the case of comet Churyumov-Gerasimenko. It is shown that kinetic effects determine the state of the coma, which limits applicability of a hydrodynamics approach. The study of the coma was performed in the region starting from the surface of the nucleus and extending up to 106 km, which allows incorporation of a realistic model of the gas production from the nucleus from a thermophysical model of a porous ice/dust mixture accounting for the thermal reradiation, the subsurface sublimation and recondensation, and the subsurface mass and energy transport. The results obtained present states of the coma for a series of stages throughout the Rosetta mission and can serve for the planning of the mission as well as for the interpretation of ground-based observations during the 2009 and 2016 apparitions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据