4.7 Article

A comprehensive maximum likelihood analysis of the structural properties of faint milky way satellites

期刊

ASTROPHYSICAL JOURNAL
卷 684, 期 2, 页码 1075-1092

出版社

IOP PUBLISHING LTD
DOI: 10.1086/590336

关键词

galaxies : dwarf; local group

向作者/读者索取更多资源

We derive the structural parameters of the recently discovered very low luminosity Milky Way satellites through a maximum likelihood algorithm applied to SDSS data. For each satellite, even when only a few tens of stars are available down to the SDSS flux limit, the algorithm yields robust estimates and errors for the centroid, position angle, ellipticity, exponential half-light radius and number of member stars ( within the SDSS). This latter parameter is then used in conjunction with stellar population models of the satellites to derive their absolute magnitudes and stellar masses, accounting for color-magnitude diagram shot noise. Most parameters are in good agreement with previous determinations, but we now properly account for parameter covariances. However, we find that faint satellites are somewhat more elliptical than initially thought, and ascribe this effect to the previous use of smoothed maps, which can be dominated by the smoothing ( round) kernel. As a result, the faintest half of the Milky Way dwarf galaxies (M-V greater than or similar to -7.5) is significantly (4 sigma) flatter ( = 0.47 +/- 0.03) than its brightest half (M-V less than or similar to -7.5, = 0.32 +/- 0.02). From our best models, we also investigate whether the seemingly distorted shape of the satellites, often taken to be a sign of tidal distortion, can be quantified. We find that, except for tentative evidence of distortion in Canes Venatici I and Ursa Major II, these can be completely accounted for by Poisson scatter in the sparsely sampled systems. We consider three scenarios that could explain the rather elongated shape of faint satellites: rotation supported systems, stars following the shape of more triaxial dark matter subhalos, or elongation due to tidal interaction with the Milky Way. Although none of these is entirely satisfactory, the last one appears the least problematic, but obviously warrants much deeper observations to track evidence of such tidal interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据