4.7 Article

Improved parameters for extrasolar transiting planets

期刊

ASTROPHYSICAL JOURNAL
卷 677, 期 2, 页码 1324-1342

出版社

IOP PUBLISHING LTD
DOI: 10.1086/529429

关键词

methods : data analysis; planetary systems; stars : abundances; stars : fundamental parameters; techniques : spectroscopic

向作者/读者索取更多资源

We present refined values for the physical parameters of transiting exoplanets, based on a self-consistent and uniform analysis of transit light curves and the observable properties of the host stars. Previously it has been difficult to interpret the ensemble properties of transiting exoplanets because of the widely different methodologies that have been applied in individual cases. Furthermore, previous studies often ignored an important constraint on the mean stellar density that can be derived directly from the light curve. The main contributions of this work are (1) a critical compilation and error assessment of all reported values for the effective temperature and metallicity of the host stars, (2) the application of a consistent methodology and treatment of errors in modeling the transit light curves, and (3) more accurate estimates of the stellar mass and radius based on stellar evolution models, incorporating the photometric constraint on the stellar density. We use our results to revisit some previously proposed patterns and correlations within the ensemble. We confirm the mass-period correlation and find evidence for a new pattern within the scatter about this correlation: planets around metal-poor stars are more massive than those around metal-rich stars at a given orbital period. Likewise, we confirm the proposed dichotomy of planets according to their Safronov number, and we find evidence that the systems with small Safronov numbers are more metal-rich on average. Finally, we confirm the trend that led to the suggestion that higher metallicity stars harbor planets with a greater heavy-element content.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据