4.6 Article

Alternative lipid mobilization: The insect shuttle system

期刊

MOLECULAR AND CELLULAR BIOCHEMISTRY
卷 239, 期 1-2, 页码 113-119

出版社

SPRINGER
DOI: 10.1023/A:1020541010547

关键词

lipid transport; lipoprotein; lipophorin; apolipophorin III; apoE; low-density lipoprotein receptor; insect lipophorin receptor; diacylglycerol; exercise; insect flight

向作者/读者索取更多资源

Lipid mobilization in long-distance flying insects has revealed a novel concept for lipid transport in the circulatory system during exercise. Similar to energy generation for sustained locomotion in mammals, the work accomplished by non-stop flight activity is powered by oxidation of free fatty acids (FFA) derived from endogenous reserves of triacylglycerol. The transport form of the lipid, however, is diacylglycerol (DAG), which is delivered to the flight muscles associated with lipoproteins. In the insect system, the multifunctional lipoprotein, high-density lipophorin (HDLp) is loaded with DAG while additionally, multiple copies of the exchangeable apolipoprotein, apoLp-III, associate with the expanding particle. As a result, lipid-enriched low-density lipophorin (LDLp) is formed. At the flight muscles, LDLp-carried DAG is hydrolyzed and FFA are imported into the muscle cells for energy generation. The depletion of DAG from LDLp results in the recovery of both HDLp and apoLp-III, which are reutilized for another cycle of DAG transport. A receptor for HDLp, identified as a novel member of the vertebrate low-density lipoprotein (LDL) receptor family, does not seem to be involved in the lipophorin shuttle mechanism operative during flight activity. In addition, endocytosis of HDLp mediated by the insect receptor does not seem to follow the classical mammalian LDL pathway. Many structural elements of the lipid mobilization system in insects are similar to those in mammals. Domain structures of apoLp-I and apoLp-II, the non-exchangeable apolipoprotein components of HDLp, are related to apoB100. ApoLp-III is a bundle of five amphipathic alpha-helices that binds to a lipid surface very similar to the four-helix bundle of the N-terminal domain of human apoE. Despite these similarities, the functioning of the insect lipoprotein in energy transport during flight activity is intriguingly different, since the TAG-rich mammalian lipoproteins play no role as a carrier of mobilized lipids during exercise and besides, these lipoproteins are not functioning as a reusable shuttle for lipid transport. On the other hand, the deviant behavior of similar molecules in a different biological system may provide a useful alternative model for studying the molecular basis of processes related to human disorders and disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据