4.7 Article

TOWARD PLANETESIMALS: DENSE CHONDRULE CLUMPS IN THE PROTOPLANETARY NEBULA

期刊

ASTROPHYSICAL JOURNAL
卷 687, 期 2, 页码 1432-1447

出版社

IOP PUBLISHING LTD
DOI: 10.1086/591239

关键词

accretion, accretion disks; instabilities; minor planets, asteroids; solar system: formation; turbulence

向作者/读者索取更多资源

We outline a scenario that traces a direct path from freely floating nebula particles to the first 10-100 km sized bodies in the terrestrial planet region, producing planetesimals that have properties matching those of primitive meteorite parent bodies. We call this primary accretion.'' The scenario draws on elements of previous work and introduces a new critical threshold for planetesimal formation. We presume the nebula to be weakly turbulent, which leads to dense concentrations of aerodynamically size-sorted particles that have properties similar to those observed in chondrites. The fractional volume of the nebula occupied by these dense zones or clumps obeys a probability distribution as a function of their density, and the densest concentrations have particle mass densities that are 100 times that of the gas. However, even these densest clumps are prevented by gas pressure from undergoing gravitational instability in the traditional sense (on a dynamical timescale). While in this state of arrested development, they are susceptible to disruption by the ram pressure of the differentially orbiting nebula gas. However, self-gravity can preserve sufficiently large and dense clumps from ram pressure disruption, allowing their entrained particles to sediment gently but inexorably toward their centers, producing 10-100 km sandpile'' planetesimals. Localized radial pressure fluctuations in the nebula, as well as interactions between differentially moving dense clumps, will also play a role that must be accounted for in future studies. The scenario is readily extended from meteorite parent bodies to primary accretion throughout the solar system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据