4.4 Article

Side-stream cigarette smoke induces dose-response in systemic inflammatory cytokine production and oxidative stress

期刊

EXPERIMENTAL BIOLOGY AND MEDICINE
卷 227, 期 9, 页码 823-829

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/153537020222700916

关键词

pro-inflammatory cytokines; cardiac vitamin E; arterial resistance

向作者/读者索取更多资源

Side-stream cigarette smoke (SSCS), a major component of secondhand smoke, Induces reactive oxygen species, which promote oxidative damage in tissues and organs. Inflammatory cytokines play an important role in the pathogenesis of atherosclerosis and heart failure. The present 4-month study examined the effect of various chronic SSCS exposure levels on splenic inflammatory cytokine secretion, heart contractile function, and pathology at 60- and 120-min per day, 5 days per week, for a total of 16 weeks. Tissue vitamin E level and lipid peroxide production also were tested to estimate the oxidative stress. The study found that the pro-inflammatory cytokines, interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and IL-1beta, significantly increased in 120-min SSCS-exposed mice. Decreased stroke volume and increased peripheral arterial resistance were observed in mice exposed to 120-min SSCS per day. Heart pathology was only found in 120-min SSCS-exposed mice. Cardiac and hepatic antioxidant vitamin E levels were decreased as a result of oxidative stress. Hepatic lipid peroxides were increased upon 60-min SSCS exposure. The data also demonstrated that the cardiac alpha-tocopherol level has a strong correlation with stroke volume; splenic IL-1beta has a strong negative correlation with stroke volume; splenic TNF-alpha has a very strong negative correlation with stroke volume. In conclusion, SSCS exposure induced systemic inflammatory responses. SSCS exposure also accentuated systemic lipid peroxidation with depletion of cardiac and hepatic antioxidant vitamin E level. Finally, SSCS exposure at 120 min per day decreased stroke volume and increased vascular resistance. Systemic IL-1beta and TNF-alpha production are responsible for heart contractile dysfunction. Free radicals may be responsible for the progression to heart contractile dysfunction Induced, in part, by SSCS. Oxidized lipoprotein could contribute to the vascular functional changes. Exploring the mechanism of vascular dysfunction in mice is warranted. A more precise quantification of the smoking exposure dose in mice needs to be determined as well.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据