4.8 Article

A polarized microtubule array for kinesin-powered-nanoscale assembly and force generation

向作者/读者索取更多资源

Kinesins are biological motors that transport cargo unidirectionally along microtubule tracks. These motors are attractive candidates for carrying out biomolecular separations, directed assembly of nanoparticles, or for powering nano- or microscale devices. However, a prerequisite for harnessing kinesins is properly aligning the microtubule tracks that they walk along. We describe a method for constructing an array of aligned microtubules on a two-dimensional surface. The process involves immobilizing short microtubule seeds, polymerizing long microtubules uniquely from one end, and then attaching the elongated filaments to the surface. To quantitate the extent of microtubule alignment, we analyzed microtubule orientations from four different arrays and found a standard deviation of 12.8degrees, which is comparable to the alignment of oriented microtubule arrays observed in migrating fibroblasts. By producing a field of aligned microtubules, this array provides a launching point for employing kinesins for directed assembly or nanoscale force generation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据