4.6 Article

Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 40, 页码 37741-37746

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M204050200

关键词

-

向作者/读者索取更多资源

When maize seedlings were exposed to cold stress, a genome-wide demethylation occurred in root tissues. Screening of genomic DNA identified one particular fragment that was demethylated during chilling. This 1.8-kb fragment, designated ZmMI1, contained part of the coding region of a putative protein and part of a retrotransposon-like sequence. ZmMI1 was transcribed only under cold stress. Direct methylation mapping revealed that hypomethylated regions spanning 150 bases alternated with hypermethylated regions spanning 50 bases. Analysis of nuclear DNA digested with micrococcal nuclease indicated that these regions corresponded to nucleosome cores and linkers, respectively. Cold stress induced severe demethylation in core regions but left linker regions relatively intact. Thus, methylation and demethylation were periodic in nucleosomes. The following biological significance is conceivable. First, because DNA methylation in nucleosomes induces alteration of gene expression by changing chromatin structures, vast demethylation may serve as a common switch for many genes that are simultaneously controlled upon environmental cues. Second, because artificial demethylation induces heritable changes in plant phenotype (Sano, H., Kamada, I., Youssefian, S., Katsumi, M., and Wabilko, H. (1990) Mol. Gen. Genet. 220, 441-447), altered DNA methylation may result in epigenetic inheritance, in which gene expression is modified without changing the nucleotide sequence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据