4.7 Article

Kinematics of diffuse ionized gas halos: A ballistic model of halo rotation

期刊

ASTROPHYSICAL JOURNAL
卷 578, 期 1, 页码 98-108

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/342309

关键词

galaxies : evolution; galaxies : individual (NGC 891, NGC 5775); gravitation; ISM : kinematics and dynamics; stellar dynamics

向作者/读者索取更多资源

To better understand diffuse ionized gas (DIG) kinematics and halo rotation in spiral galaxies, we have developed a model in which clouds are ejected from the disk and follow ballistic trajectories through the halo. The behavior of clouds in this model has been investigated thoroughly through a parameter space search and a study of individual cloud orbits. Synthetic velocity profiles have been generated in z (height above the plane) from the models for the purpose of comparing with velocity centroid data from previously obtained long-slit spectra of the edge-on spirals NGC 891 (one slit) and NGC 5775 (two slits). In each case, a purely ballistic model is insufficient to explain observed DIG kinematics. In the case of NGC 891, the observed vertical velocity gradient is not as steep as predicted by the model, possibly suggesting a source of coupling between disk and halo rotation or an outwardly directed pressure gradient. The ballistic model more successfully explains DIG kinematics observed in NGC 5775; however, it cannot explain the observed trend of high-z gas velocities nearly reaching the systemic velocity. Such behavior can be attributed to either an inwardly directed pressure gradient or a possible tidal interaction with its companion, NGC 5774. In addition, the ballistic model predicts that clouds move radially outward as they cycle through the halo. The mass and energy fluxes estimated from the model suggest that this radially outward gas migration leads to a redistribution of material that may significantly affect the evolution of the interstellar medium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据