4.6 Article

Origin of spectral broadening in π-conjugated amorphous semiconductors -: art. no. 155206

期刊

PHYSICAL REVIEW B
卷 66, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.66.155206

关键词

-

向作者/读者索取更多资源

We present a study of the picosecond fluorescence dynamics of pi-conjugated semiconducting organic dendrimers in the solid state. By varying the degree of branching within the dendrons, referred to as the dendrimer generation, a control of intermolecular spacing of the emissive core and therefore of the lattice parameter for Forster-type energy transfer is achieved. This allows a distinction between spectral diffusion and excimer formation as the two main sources of spectral broadening in organic semiconductors. Whereas Forster-type dispersive spectral relaxation is independent of temperature but strongly dependent on the interchromophore distance, excimer formation is also strongly thermally activated due to temperature-dependent conformational changes and the influence of thermally activated dynamic disorder. The rapid spectral diffusion allows a determination of the excimer rise in the emission, which is shown to have a profound impact on the steady state luminescence properties of dendrimer films. We show that the dendrimer generation not only allows a microscopic control of intermolecular interactions but also a direct control of the rate of spectral diffusion. Implications for the design of novel materials for optoelectronic devices are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据