4.5 Article

NSF regulates membrane traffic along multiple pathways in Paramecium

期刊

JOURNAL OF CELL SCIENCE
卷 115, 期 20, 页码 3935-3946

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.00079

关键词

ciliates; Paramecium; secretion; phagocytosis; Golgi; endoplasmic reticulum

向作者/读者索取更多资源

N-ethylmaleimide (NEM)-sensitive factor (NSF), a regulator of soluble NSF attachment protein receptors (SNAREs), is required for vesicular transport in many eukaryotic cells. In the ciliated protozoon Paramecium, complex but well-defined transport routes exist, constitutive and regulated exocytosis, endocytosis, phagocytosis and a fluid excretory pathway through contractile vacuoles, that can all be studied independently at the whole cell level. To unravel the role of NSF and of the SNARE machinery in this complex traffic, we looked for NSF genes in Paramecium, starting from a partial sequence found in a pilot random sequencing project. We found two very similar genes, PtNSF1 and PtNSF2, which both seem to be expressed. Peptide-specific antibodies (Abs) recognize PtNSF as a 84 kDa band. PtNSF gene silencing results in decreasing phagocytotic activity, while stimulated exocytosis of dense core-vesicles (trichocysts), once firmly attached at the cell membrane, persists. Ultrastructural analysis of silenced cells shows deformation 3935 or disappearance of structures involved in membrane traffic. Aggregates of numerous small, smooth vesicles intermingled with branches of ER occur in the cytoplasm and are most intensely labeled with anti-NSF Ab-gold. Furthermore, elongated vesicles of similar to30 nm diameter can be seen attached at cortical calcium storage compartments, the alveolar sacs, whose unknown biogenesis may thus be revealed. Involvement of PtNSF in some low frequency fusion events was visualized in non-silenced cells by immuno-fluorescence, after cautious permeabilization in the presence of ATP-gamma-S and NEM. Our data document that PtNSF is involved in distinct pathways of vesicle traffic in Paramecium and that actual sensitivity to silencing is widely different, apparently dependent on the turnover of membrane-to-membrane attachment formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据