4.7 Article

MAGNETICALLY FED HOT STAR KEPLERIAN DISKS WITH SLOW OUTFLOW

期刊

ASTROPHYSICAL JOURNAL
卷 688, 期 2, 页码 1320-1325

出版社

IOP PUBLISHING LTD
DOI: 10.1086/592558

关键词

circumstellar matter; stars: early-type; stars: emission-line, Be; stars: magnetic fields; stars: rotation; stars: winds, outflows

资金

  1. UK STFC
  2. NSF
  3. Science and Technology Facilities Council [ST/F002149/1] Funding Source: researchfish
  4. STFC [ST/F002149/1] Funding Source: UKRI

向作者/读者索取更多资源

The puzzle of the origin of Be star disks is discussed. Contrary to recently published claims, it is argued that the magnetically torqued disk ( MTD) type models of Cassinelli et al. offer a viable scenario for a successful model with all the key ingredients. MTD models involve disk compression by equatorial collision of stellar wind streams that are steered and torqued by a dipole- like magnetic field. While the growing disk density tends to lead to the gas breaking out centrifugally from the field, it is proposed that the onset of viscous effects can lead to an eventual stable, slowly outflowing, Keplerian disk. It is then shown that the resulting very dense ( wind compressed) disk need have only a very slow subsonic outflow to satisfy mass continuity. Consequently, line profile data do not preclude steadily expanding disks of high density. It is also shown that the time taken to reach the steady state would typically be of the order of 104 wind flow times R/v(infinity). This is far longer than the run times of recent numerical MHD simulations that displayed bursty breakout behavior, which may therefore only be transients induced by unrealistic initial conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据