4.8 Article

Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.172511199

关键词

-

向作者/读者索取更多资源

Excitatory synapses in the brain exhibit a remarkable degree of functional plasticity, which largely reflects changes in the number of synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). However, mechanisms involved in recruiting AMPARs to synapses are unknown. Here we use hippocampal slice cultures and biolistic gene transfections to study the targeting of AMPARs to synapses. We show that AMPARs are localized to synapses through direct binding of the first two PDZ domains of synaptic PSD-95 (postsynaptic density protein of 95 kDa) to the AMPAR-associated protein, stargazin. Increasing the level of synaptic PSD-95 recruits new AMPARs to synapses without changing the number of surface AMPARs. At the same time, we show that stargazin overexpression drastically increases the number of extrasynaptic AMPARs, but fails to alter synaptic currents if synaptic PSD-95 levels are kept constant. Finally, we make compensatory mutations to both PSD-95 and stargazin to demonstrate the central role of direct interactions between them in determining the number of synaptic AMPARs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据