4.6 Article

Relative contributions to the plasmon line shape of metal nanoshells

期刊

PHYSICAL REVIEW B
卷 66, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.66.155431

关键词

-

向作者/读者索取更多资源

Nanoshells are mesoscopic particles consisting of a dielectric core coated with a metal shell, in particular gold or silver, of uniform nanometer scale thickness. This topology supports plasmon excitations with frequencies that are sensitively dependent on the relative radii of the nanoparticle's core and shell. The plasmon linewidth for this geometry is typically quite broad, nominally 100 nm or more in wavelength at plasmon resonance wavelengths in the near infrared. Several distinct physical mechanisms control the plasmon lineshape: phase retardation effects, including multipolar plasmon contributions; inhomogeneous broadening due to core and shell size distributions; and electron scattering at the shell interfaces. These mechanisms are examined in terms of their relative contributions to the plasmon line shape for nanoshells fabricated with diameters of 100-250 nm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据