4.7 Article

Non-Gaussianity of the cosmic baryon fluid: Log-Poisson hierarchy model

期刊

ASTROPHYSICAL JOURNAL
卷 672, 期 1, 页码 11-18

出版社

IOP PUBLISHING LTD
DOI: 10.1086/523684

关键词

cosmology : theory; large-scale structure of universe

向作者/读者索取更多资源

In the nonlinear regime of cosmic clustering, the mass density field of the cosmic baryon fluid is highly non-Gaussian. It shows different dynamical behavior from collisionless dark matter. Nevertheless, the evolved field of the baryon fluid is scale- covariant in the range from the Jeans length to a few tens of h(-1) Mpc, within which the dynamical equations and initial perturbations are scale free. We show that in the scale-free range, the non-Gaussian features of the cosmic baryon fluid, governed by the Navier-Stokes equation in an expanding universe, can be well described by a log-Poisson hierarchical cascade. The log-Poisson scheme is a random multiplicative process (RMP), which causes non-Gaussianity and intermittency even when the original field is Gaussian. The log-Poisson RMP contains two dimensionless parameters: beta for the intermittency and gamma for the most singular structure. All the predictions given by the log-Poisson RMP model, including the hierarchical relation, the order dependence of the intermittent exponent, the moments, and the scale-scale correlation, are in good agreement with the results given by hydrodynamic simulations of the standard cold dark matter model. The intermittent parameter beta decreases slightly at low redshift and indicates that the density field of the baryon fluid contains more singular structures at lower redshifts. The applicability of the model is addressed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据