4.8 Article

Electrochromic modulation of excited-state intramolecular proton transfer: The new principle in design of fluorescence sensors

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 124, 期 41, 页码 12372-12379

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja027669l

关键词

-

向作者/读者索取更多资源

Internal Stark effect (or internal electrochromy) consists of the shift of light absorption and emission bands under the influence of electric field produced by proximal charges. In the studies of 3-hydroxyflavone (3HF) derivatives exhibiting the excited-state intramolecular proton transfer (ESIPT), we describe a new phenomenon - a very strong internal electrochromic modulation of this reaction. Fluorescence spectra of 3HF derivatives with charged groups attached to the chromophore from the opposite sides without pi-electronic conjugation, N-[(4'-diethylamino)-3-hydroxy-6-flavonyl]methyl-N,N-dimethyloctylammonium bromide and 4-{4-[4'-(3-hydroxyflavonyl)]piperazino}-1-(3-sulfopropyl)pyridinium, were compared with those of their neutral analogues in a series of representative solvents. The introduction of the proximal charge results in shifts of absorption spectrum and of both normal (N*) and tautomer (T*) emission bands, which correspond to initial and phototautomer states of the ESIPT reaction. The observed shifts are in accordance with the Stark effect theory. The direction of the shift depends on the position of the proximal charge with respect to the chromophore. The magnitude of the shift depends strongly on the solvent dielectric constant and on screening or unscreening produced by addition of the hydrophobic salts. In all of these cases, the spectral shifts are accompanied by extremely strong variations of relative intensities of N* and T* emission bands. This signifies a strong influence of internal electric field on the ESIPT reaction, which produces a dramatic change of emission color. Thus, the coupling of the initial electrochromic sensory signal with the ESIPT reaction allows for the breaking of the limit in magnitude of response inherent to common electrochromic dyes. This suggests a new principle of designing the ultrasensitive electrochromic two-wavelength fluorescence sensors and probes for analytical chemistry, macromolecular science, and cellular biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据