4.7 Article

The evolution of circumstellar disks in Ophiuchus binaries

期刊

ASTROPHYSICAL JOURNAL
卷 677, 期 1, 页码 616-629

出版社

IOP PUBLISHING LTD
DOI: 10.1086/526394

关键词

planetary systems : formation; stars : pre-main-sequence

向作者/读者索取更多资源

Four Ophiuchus binaries, two Class I systems and two Class II systems, with separations of similar to 450-1100 AU, were observed with the Owens Valley Radio Observatory (OVRO) millimeter interferometer. In each system, the 3 mm continuum maps show dust emission at the location of the primary star, but no emission at the position of the secondary. This result is different from observations of less evolved Class 0 binaries, in which dust emission is detected from both sources. The nondetection of secondary disks is, however, similar to the dust distribution seen in wide Class II Taurus binaries. The combined OVRO results from the Ophiuchus and Taurus binaries suggest that secondary disk masses are significantly lower than primary disk masses by the Class II stage, with initial evidence that massive secondary disks are reduced by the Class I stage. Although some of the secondaries retain hot inner disk material, the early dissipation of massive outer disks may negatively impact planet formation around secondary stars. Masses for the circumprimary disks are within the range of masses measured for disks around single T Tauri stars and, in some cases, larger than the minimum mass solar nebula. More massive primary disks are predicted by several formation models and are broadly consistent with the observations. Combining the 3 mm data with previous 1.3 mm observations, the dust opacity power-law index for each primary disk is estimated. The opacity index values are all less than the scaling for interstellar dust, possibly indicating grain growth within the circumprimary disks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据