4.7 Article

Localizing coalescing massive black hole binaries with gravitational waves

期刊

ASTROPHYSICAL JOURNAL
卷 677, 期 2, 页码 1184-1200

出版社

IOP PUBLISHING LTD
DOI: 10.1086/528953

关键词

black hole physics; galaxies : nuclei; gravitation; gravitational waves

向作者/读者索取更多资源

Massive black hole binary coalescences are prime targets for space-based gravitational wave (GW) observatories such as LISA. GW measurements can localize the position of a coalescing binary on the sky to an ellipse with a major axis of a few tens of arcminutes to a few degrees, depending on source redshift, and a minor axis which is 2-4 times smaller. Neglecting weak gravitational lensing, the GWs would also determine the source's luminosity distance to better than percent accuracy for close sources, degrading to several percent for more distant sources. Weak lensing cannot, in fact, be neglected and is expected to limit the accuracy with which distances can be fixed to errors no less than a few percent. Assuming a well-measured cosmology, the source's redshift could be inferred with similar accuracy. GWs alone can thus pinpoint a binary to a three-dimensional pixel'' which can help guide searches for the hosts of these events. We examine the time evolution of this pixel, studying it at merger and at several intervals before merger. One day before merger, the major axis of the error ellipse is typically larger than its final value by a factor of similar to 1.5-6. The minor axis is larger by a factor of similar to 2-9, and, neglecting lensing, the error in the luminosity distance is larger by a factor of similar to 1.5-7. This large change over a short period of time is due to spin-induced precession, which is strongest in the final days before merger. The evolution is slower as we go back further in time. For z = 1, we find that GWs will localize a coalescing binary to within similar to 10 deg(2) as early as a month prior to merger and determine distance (and hence redshift) to several percent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据