4.7 Article

A new method to detect related function among proteins independent of sequence and fold homology

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 323, 期 2, 页码 387-406

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-2836(02)00811-2

关键词

functional comparison of proteins; cavity comparison; data mining; de novo design; physicochemical properties

向作者/读者索取更多资源

A new method has been developed to detect functional relationships among proteins independent of a given sequence or fold homology. It is based on the idea that protein function is intimately related to the recognition and subsequent response to the binding of a substrate or an endogenous ligand in a well-characterized binding pocket. Thus, requires conserved recognition features exposed in terms of common physicochemical interaction properties via the functional groups of the residues flanking a particular binding cavity. Following a technique commonly used in the comparison of small molecule ligands, generic pseudocenters coding for possible interaction properties were assigned for a large sample set of cavities extracted from the entire PDB and stored in the database Cavbase. Using a particular query cavity a series of related cavities of decreasing similarity is detected based on a clique detection algorithm. The detected similarity is ranked according to property-based surface patches shared in common by the different clique solutions. The approach either retrieves protein cavities accommodating the same (e.g. co-factors) or closely related ligands or it extracts proteins exhibiting similar function in terms of a related catalytic mechanism. Finally the new method has strong potential to suggest alternative molecular skeletons in de novo design. The retrieval of molecular building blocks accommodated in a particular sub-pocket that shares similarity with the pocket in a protein studied by drug design can inspire the discovery of novel ligands. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据