4.6 Article

Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1α

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 42, 页码 40112-40117

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M206922200

关键词

-

资金

  1. NCI NIH HHS [CA09302, CA67166] Funding Source: Medline

向作者/读者索取更多资源

Stabilization of the hypoxia-inducible factor-1 (HIF-1) protein is essential for its role as a regulator of gene expression under low oxygen conditions. Here, employing a novel hydroxylation-specific antibody, we directly show that proline 564 of HIF-1alpha and proline 531 of HIF-2alpha are hydroxylated under normoxia. Importantly, HIF-1alpha Pro-564 and HIF-2alpha Pro-531 hydroxylation is diminished with the treatment of hypoxia, cobalt chloride, desferrioxamine, or dimethyloxalyglycine, regardless of the E3 ubiquitin ligase activity of the von Hippel-Lindau (VHL) tumor suppressor gene. Furthermore, in VHL-deficient cells, HIF-1alpha Pro-564 and HIF-2alpha Pro-531 had detectable amounts of hydroxylation following transition to hypoxia, indicating that the post-translational modification is not reversible. The introduction of v-Src or RasV12 oncogenes resulted in the stabilization of normoxic HIF-1alpha and the loss of hydroxylated Pro-564, demonstrating that oncogene-induced stabilization of HIF-1alpha is signaled through the inhibition of prolyl bydroxylation. Conversely, a constitutively active Akt oncogene stabilized HIF-1alpha under normoxia independently of prolyl hydroxylation, suggesting an alternative mechanism for HIF-1alpha stabilization. Thus, these results indicate distinct pathways for HIF-1alpha stabilization by different oncogenes. More importantly, these findings link oncogenesis with normoxic HIF-1alpha expression through prolyl hydroxylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据