4.7 Article

THE IMPACT OF BARYONIC COOLING ON GIANT ARC ABUNDANCES

期刊

ASTROPHYSICAL JOURNAL
卷 687, 期 1, 页码 22-38

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/589955

关键词

cosmology: theory

向作者/读者索取更多资源

Using ray tracing for simple analytic profiles, we demonstrate that the lensing cross section for producing giant arcs has distinct contributions due to arcs formed through image distortion only, and arcs form from the merging of two or three images. We investigate the dependence of each of these contributions on halo ellipticity and on the slope of the density profile, and demonstrate that at fixed Einstein radius, the lensing cross section increases as the halo profile becomes steeper. We then compare simulations with and without baryonic cooling of the same cluster for a sample of six clusters, and demonstrate that cooling can increase the overall abundance of giant arcs by factors of a few. The net boost to the lensing probability for individual clusters is mass dependent, and can lower the effective low-mass limit of lensing clusters. This last effect can potentially increase the number of lensing clusters by an extra 50%. While the magnitude of these effects may be overestimated due to the well-known overcooling problem in simulations, it is evident that baryonic cooling has a nonnegligible impact on the expected abundance of giant arcs, and hence cosmological constraints from giant arc abundances may be subject to large systematic errors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据