4.6 Article

The tetraspan protein epithelial membrane protein-2 interacts with β1 integrins and regulates adhesion

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 43, 页码 41094-41100

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M206868200

关键词

-

资金

  1. NCI NIH HHS [5T32 CA 009120-27] Funding Source: Medline
  2. NIAID NIH HHS [AI 28697] Funding Source: Medline

向作者/读者索取更多资源

The growth arrest-specific-3 (GAS3)/PMP22 proteins are members of the four-transmembrane (tetraspan) superfamily. Although the function of these proteins is poorly understood, GAS3/PMP22 proteins have been implicated in the control of growth and progression of certain cancers. Epithelial membrane protein-2 (EMP2), a GAS3/PMP22 family member, was recently identified as a putative tumor suppressor gene. Here, we addressed the normal function of EMP2 by testing the prediction that it influences integrin-related cell functions. We observed that EMP2 associates with the beta(1) integrin subunit. Co-immunoprecipitation and immunodepletion experiments indicated that similar to60% of beta(1) integrins and EMP2 can be isolated in common protein complexes. Whereas this association between EMP2 and beta(1) integrin may be direct or indirect, it has features of integrin heterodimer selectivity. Thus, by laser confocal microscopy, EMP2 colocalized with alpha(6)beta(1), but not alpha(5)beta(1) integrin. Increased expression of EMP2 also influenced the integrin heterodimer repertoire present on the plasma membrane. EMP2 specifically increased the surface expression of the alpha(6)beta(1) integrin while decreasing that of the alpha(5)beta(1) protein. Reciprocally, reduction in EMP2 expression using a specific ribozyme decreased surface expression of alpha(6)beta(1), integrin. Accordingly, these EMP2-mediated changes resulted in a dramatic alteration in cellular adhesion to extracellular matrix proteins. This study demonstrates for the first time the interaction of a GAS3/PMP22 family member with an integrin protein and suggests that such interactions and their functional consequences are a physiologic role of GAS3/PMP22 proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据