4.7 Article

Central role of α7 nicotinic receptor in differentiation of the stratified squamous epithelium

期刊

JOURNAL OF CELL BIOLOGY
卷 159, 期 2, 页码 325-336

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.200206096

关键词

cell cycle; differentiation; alpha 7 acetylcholine receptor; epidermis; knockout mouse

资金

  1. NIDCR NIH HHS [DE 14173, R01 DE014173] Funding Source: Medline
  2. NIGMS NIH HHS [GM 62136, R01 GM062136] Funding Source: Medline

向作者/读者索取更多资源

Several ganglionic nicotinic acetylcholine receptor (nAChR) types are abundantly expressed in nonneuronal locations, but their functions remain unknown. We found that keratinocyte alpha7 nAChR controls homeostasis and terminal differentiation of epidermal keratinocytes required for formation of the skin barrier. The effects of functional inactivation of alpha7 nAChR on keratinocyte cell cycle progression, differentiation, and apoptosis were studied in cell monolayers treated with alpha-bungarotoxin or antisense oligonucleotides and in the skin of Acra7 homozygous mice lacking alpha7 nAChR channels. Elimination of the alpha7 signaling pathway blocked nicotine-induced influx of Ca-45(2+) and also inhibited terminal differentiation of these cells at the transcriptional and/or translational level. On the other hand, inhibition of the alpha7 nAChR pathway favored cell cycle progression. In the epidermis of alpha7(-/-) mice, the abnormalities in keratinocyte gene expression were associated with phenotypic changes characteristic of delayed epidermal turnover. The lack of alpha7 was associated with up-regulated expression of the alpha3 containing nAChR channels that lack alpha5 subunit, and both homomeric alpha9- and heteromeric alpha9alpha10-made nAChRs. Thus, this study demonstrates that ACh signaling through alpha7 nAChR channels controls late stages of keratinocyte development in the epidermis by regulating expression of the cell cycle progression, apoptosis, and terminal differentiation genes and that these effects are mediated, at least in part, by alterations in transmembrane Ca2+ influx.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据