4.7 Article

Century-scale nitrogen and phosphorus controls of the carbon cycle

期刊

CHEMICAL GEOLOGY
卷 190, 期 1-4, 页码 13-32

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0009-2541(02)00108-0

关键词

nitrogen; phosphorus; carbon; biogeochemical cycles

向作者/读者索取更多资源

In recent decades, humans have become a very important force in the Earth system, demonstrating that emissions (gaseous, liquid, and solid) are the cause of many of our environmental issues. These emissions are responsible for major global reorganizations of the biogeochemical cycles. The oceans are now a net sink of atmospheric CO2, whereas in their preindustrial state they were a source; the trophic state of the coastal oceans is progressively moving toward increased heterotrophy; and the terrestrial realm is now vacillating between trophic states, whereas in preindustrial times it was autotrophic. In this paper, we present model calculations that underscore the role of human-induced perturbations in changing Earth's climate, specifically the role of anthropogenic nitrogen and phosphorus in controlling processes in the global carbon cycle since the year 1850 with projections to the year 2035. Our studies show that since the late 1940's emissions of nitrogen and phosphorus have been sequestered in the terrestrial living phytomass and groundwater. This nutrient-enhanced fertilization of terrestrial biota, coupled with rising atmospheric CO2 and global temperature, has induced a sink of anthropogenic CO2 that roughly balances the emission of CO2 owing to land use change. In the year 2000, for example, the model-calculated terrestrial biotic sink was 1730 Mtons C/year, while the emission of CO2 from changes in land use was 1820 Mtons C/year, a net flux of 90 Mtons C/year emitted to the atmosphere. In the global aquatic environment, enhanced terrestrial inputs of biotically reactive phosphorus (about 8.5 Mtons P/year) and inorganic nitrogen (about 54 Mtons N/year), have induced increased new production and burial of organic carbon in marine sediments, which is a small sink of anthropogenic CO2. It is predicted that the response of the global land reservoirs of C, N, and P to sustained anthropogenic perturbations will be maintained in the same direction of change over the range of projected scenarios of global population increase and temperature change for the next 35 years. The magnitude of change is significantly larger when the global temperature increase is maximum, especially with respect to the processes of remobilization of the biotically important nutrients nitrogen and phosphorus. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据