4.5 Article Proceedings Paper

Current thoughts on the phosphatidylinositol transfer protein family

期刊

FEBS LETTERS
卷 531, 期 1, 页码 74-80

出版社

WILEY
DOI: 10.1016/S0014-5793(02)03412-9

关键词

phospholipase C; phosphatidylinositol 3-kinase; phosphoinositide; membrane traffic; growth factor; lipid signaling

向作者/读者索取更多资源

Monomeric transport of lipids is carried out by a class of proteins that can shield a lipid from the aqueous environment by binding the lipid in a hydrophobic cavity. One such group of proteins is the phosphatidylinositol transfer proteins (PITP) that can bind phosphatidylinositol and phosphatidylcholine and transfer them from one membrane compartment to another., PITPs are found in both unicellular and multicellular organisms but not bacteria. In mice and humans, the PITP domain responsible for lipid transfer is found in five proteins, which can be classified into two classes based on sequence. Class I PITPs comprises two family members, alpha and beta, small 35 kDa proteins with a single PITP domain which are ubiquitously expressed. Class IIA PITPs (RdgBalphaI and II) are larger proteins possessing additional domains that target the protein to membranes and are only able to bind lipids but not mediate transfer. Finally, Class IIB PITP (RdgBbeta) is similar to Class I in size (38 kDa) and is also ubiquitously expressed. Class III PITPs, exemplified by the Sec14p family, are found in yeast and plants but are unrelated in sequence and structure to Class I and Class II PITPs. In this review we discuss whether PITP proteins are passive transporters or are regulated proteins that are able to couple their transport and binding properties to specific biological functions including inositol lipid signalling and membrane turnover. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据