4.6 Article

Bayesian detection of planetary transits - A modified version of the Gregory-Loredo method for Bayesian periodic signal detection

期刊

ASTRONOMY & ASTROPHYSICS
卷 395, 期 2, 页码 625-636

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20021290

关键词

planetary systems; occultations; methods : data analysis

向作者/读者索取更多资源

The detection of planetary transits in stellar photometric light-curves is poised to become the main method for finding substantial numbers of terrestrial planets. The French-European mission COROT (foreseen for launch in 2005) will perform the first search on a limited number of stars, and larger missions Eddington (from ESA) and Kepler (from NASA) are planned for launch in 2007. Transit signals from terrestrial planets are small (DeltaF/F similar or equal to 10(-4)),short (Deltat similar or equal to 10 hours) dips, which repeat with periodicity of a few months, in time series lasting up to a few years. The reliable and automated detection of such signals in large numbers of light curves affected by different sources of noise is a statistical and computational challenge. We present a novel algorithm based on a Bayesian approach. The algorithm is based on the Gregory-Loredo method originally developed for the detection of pulsars in X-ray data. In the present paper the algorithm is presented, and its performance on simulated data sets dominated by photon noise is explored. In an upcoming paper the influence of additional noise sources (such as stellar activity) will be discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据