4.4 Article

Surface EMG crosstalk between knee extensor muscles: Experimental and model results

期刊

MUSCLE & NERVE
卷 26, 期 5, 页码 681-695

出版社

WILEY-BLACKWELL
DOI: 10.1002/mus.10256

关键词

electrically elicited muscle contractions; EMG modeling; end-of-fiber effect; surface electromyography; volume conductor

向作者/读者索取更多资源

Surface electromyographic (EMG) crosstalk between vastus lateralis, vastus medialis, and rectus femoris muscles was evaluated by selective electrical stimulation of one muscle and recording from the stimulated and another muscle with linear surface arrays of eight electrodes. The ratio between the amplitude of the signals recorded over nonstimulated and stimulated muscles and their correlation coefficient were used as indices to quantify crosstalk. Single-differential and double-differential detection systems were used with interelectrode distances in the range 10-40 mm. The multichannel EMG signals clearly showed that crosstalk is largely due to nonpropagating potentials that correspond in time to the end of the propagation of the action potentials generated by the stimulated muscle. The crosstalk signal increased with increasing interelectrode distance and was statistically higher for single- than for double-differential recordings. The correlation-based indices of crosstalk were poorly correlated with the amplitude-based indices. Moreover, the characteristic spectral frequencies of the signals detected over the nonstimulated muscles were statistically higher than those from the stimulated muscles. A mathematical model of signal generation was used to explain the experimental findings. This study clarifies many controversial findings of past investigations and creates the basis for crosstalk interpretation, simulation, and reduction. (C) 2002 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据