4.6 Article

Biosynthesis of riboflavin in archaea studies on the mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase of Methanococcus jannaschii

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 44, 页码 41410-41416

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M206863200

关键词

-

向作者/读者索取更多资源

The hypothetical protein predicted by the open reading frame MJ0055 of Methanococcus jannaschii was expressed in a recombinant Escherichia coli strain under the control of a synthetic gene optimized for translation in an eubacterial host. The recombinant protein catalyzes the formation of the riboflavin precursor 3,4-dihydroxy-2-butanone 4-phosphate from ribulose 5-phosphate at a rate of 174 nmol mg(-1) min(-1) at 37 degreesC. The homodimeric 51.6-kDa protein requires divalent metal ions, preferentially magnesium, for activity. The reaction involves an intramolecular skeletal rearrangement as shown by C-13 NMR spectroscopy using [U-C-13(5)]ribulose 5-phosphate as substrate. A cluster of charged amino acid residues comprising arginine 25, glutamates 26 and 28, and aspartates 21 and 30 is essential for catalytic activity. Histidine 164 and glutamate 185 were also shown to be essential for catalytic activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据