4.4 Article

Frequency selectivity of layer II stellate cells in the medial entorhinal cortex

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 88, 期 5, 页码 2422-2429

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00598.2002

关键词

-

资金

  1. NINDS NIH HHS [NS-34425] Funding Source: Medline

向作者/读者索取更多资源

Electrophysiologically, stellate cells (SCs) from layer II of the medial entorhinal cortex (MEC) are distinguished by intrinsic 4- to 12-Hz subthreshold oscillations. These oscillations are thought to impose a pattern of slow periodic firing that may contribute to the parahippocampal theta rhythm in vivo. Using stimuli with systematically differing frequency content, we examined supra- and subthreshold responses in SCs with the goal of understanding how their distinctive characteristics shape these responses. In reaction to repeated presentations of identical, pseudo-random stimuli, the reliability (repeatability) of the spiking response in SCs depends critically on the frequency content of the stimulus. Reliability is optimal for stimuli with a greater proportion of power in the 4- to 12-Hz range. The simplest mechanistic explanation of these results is that rhythmogenic subthreshold membrane mechanisms resonate with inputs containing significant power in the 4- to 12-Hz band, leading to larger subthreshold excursions and thus enhanced reliability. However, close examination of responses rules out this explanation: SCs do show clear subthreshold resonance (i.e., selective amplification of inputs with particular frequency content) in response to sinusoidal stimuli, while simultaneously showing a lack of subthreshold resonance in response to the pseudo-random stimuli used in reliability experiments. Our results support a model with distinctive input-output relationships under subthreshold and suprathreshold conditions. For suprathreshold stimuli, SC spiking seems to best reflect the amount of input power in the theta (4-12 Hz) frequency band. For subthreshold stimuli, we hypothesize that the magnitude of subthreshold theta-range oscillations in SCs reflects the total power, across all frequencies, of the input.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据