4.6 Article

The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma

期刊

CARCINOGENESIS
卷 23, 期 11, 页码 1781-1789

出版社

OXFORD UNIV PRESS
DOI: 10.1093/carcin/23.11.1781

关键词

-

类别

资金

  1. NIEHS NIH HHS [P42 ES010344, ES03124, ES10344, R01 ES003124, ES08389] Funding Source: Medline

向作者/读者索取更多资源

Trans-4-hydroxy-2-nonenal (4-HNE), a major electrophilic by-product of lipid peroxidation, is able to interact with DNA to form exocyclic guanine adducts. 4-HNE is a mutagen and a significant amount of 4-HNE-guanine adduct has been detected in normal cells. Recently, it has been reported that exposure of the wild-type p53 human lymphoblastoid cell line to 4-HNE causes a high frequency of G to T transversion mutations at the third base of codon 249 (-AGG*-) in the p53 gene, a mutational hotspot in human cancers, particularly hepatocellular carcinoma. These findings raise a possibility that 4-HNE could be an important etiological agent for human cancers that have a mutation at codon 249 of the p53 gene. However, to date, the sequence specificity of 4-HNE-DNA binding remains unclear due to the lack of methodology. To address this question, we have developed a method, using UvrABC nuclease, a nucleotide excision repair enzyme complex isolated from Escherichia coli, to map the distribution of 4-HNE-DNA adducts in human p53 gene at the nucleotide sequence level. We found that 4-HNE-DNA adducts are preferentially formed at the third base of codon 249 in the p53 gene. The preferential binding of 4-HNE was also observed at codon 174, which has the same sequence and the same nearest neighbor sequences (-GAGG*C-) as codon 249. These results suggest that 4-HNE may be an important etiological agent for human cancers that have a mutation at codon 249 of the p53 gene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据