4.7 Article

Preferential diffusion effects on the burning rate of interacting turbulent premixed hydrogen-air flames

期刊

COMBUSTION AND FLAME
卷 131, 期 3, 页码 246-258

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0010-2180(02)00405-4

关键词

-

向作者/读者索取更多资源

The upstream interaction of twin premixed hydrogen-air flames in 2-D turbulence is studied using direct numerical simulations with detailed chemistry. The primary objective is to determine the effect of flame stretch on the overall burning rate during various stages of the interaction. Preferential diffusion effects are accounted for by varying the equivalence ratio from symmetric rich-rich to lean-lean interactions. The results show that the local flame front response to turbulence is consistent with previous understanding of laminar premixed flames, in that rich premixed flames become intensified in regions of negative strain or curvature, while the opposite response is found for lean premixed flames. The overall burning rate history with respect to the surface density variation is found to depend on the mixture condition; the consumption rate enhancement advances (follows) the surface enhancement for the rich-rich (lean-lean) case. For the lean-lean case, a self-turbulization mechanism results in a large positive skewness in the area-weighted mean tangential strain statistics. Because of the statistical dominance of positive stretch on the flame surface, the lean-lean case results in a significantly larger burning enhancement (over a twofold increase) in addition to the surface density production. For the case of rich-rich interaction, the abundance in hydrogen species results in an instantaneous overshoot of the radical pool in the post-flame region, resulting in an additional burst in the reactant consumption rate history, suggesting its potential impact on the pollutant formation process. (C) 2002 by The Combustion Institute.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据