4.5 Article

Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis

期刊

JOURNAL OF NEUROCHEMISTRY
卷 83, 期 3, 页码 535-545

出版社

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1471-4159.2002.01112.x

关键词

amyotrophic lateral sclerosis; BN-PAGE; electron transport chain complex; motor neuron; neurodegeneration; reactive oxidative species

资金

  1. NINDS NIH HHS [R01 NS 35750, 5T32 NS 07366, NS 41739] Funding Source: Medline

向作者/读者索取更多资源

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease that causes degeneration of motoneurons. Mutation of Cu,Zn superoxide dismutase (SOD1) is one cause for this disease. In mice, expression of mutant protein causes motoneuron degeneration and paralysis resembling the human disease. Morphological change, indicative of mitochondrial damage, occurs at early stages of the disease. To determine whether mitochondrial function changes during the course of disease progression, enzyme activities of mitochondrial electron transport chain in spinal cords from mice at different disease stages were measured using three different methods: spectrophotometric assay, in situ histochemical enzyme assay, and blue native gel electrophoresis combined with in-gel histochemical reaction. The enzyme activities were decreased in the spinal cord, particularly in the ventral horn, beginning at early disease stages. This decrease persisted throughout the course of disease progression. This decrease was not detected in the spinal cords of non-transgenic animals, of mice expressing the wild-type protein, and in cerebellum and dorsal horn of the spinal cords from mice expressing mutant protein. These results demonstrate a functional defect in mitochondria in the ventral horn region and support the view that mitochondrial damage plays a role in mutant SOD1-induced motoneuron degeneration pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据