4.7 Article

Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes

期刊

FASEB JOURNAL
卷 16, 期 13, 页码 76-+

出版社

WILEY
DOI: 10.1096/fj.02-0157fje

关键词

diabetic retinopathy; apoptosis; leukocyte adhesion

向作者/读者索取更多资源

Diabetic macular edema, resulting from increased microvascular permeability, is the most prevalent cause of vision loss in diabetes. The mechanisms underlying this complication remain poorly understood. In the current study, diabetic vascular permeability (blood-retinal barrier breakdown) is demonstrated to result from a leukocyte-mediated Fas-FasL-dependent apoptosis of the retinal vasculature. Following the onset of streptozotocin-induced diabetes, FasL expression was increased in rat neutrophils (P<0.005) and was accompanied by a simultaneous increase in Fas expression in the retinal vasculature. Static adhesion assays demonstrated that neutrophils from diabetic, but not control, rats induced endothelial cell apoptosis in vitro (P<0.005). The latter was inhibited via an antibody-based FasL blockade (P<0.005). In vivo, the inhibition of FasL potently reduced retinal vascular endothelial cell injury, apoptosis, and blood-retinal barrier breakdown (P<0.0001) but did not diminish leukocyte adhesion to the diabetic retinal vasculature. Taken together, these data are the first to identify leukocyte-mediated Fas-FasL-dependent retinal endothelial cell apoptosis as a major cause of blood-retinal barrier breakdown in early diabetes. These data imply that the targeting of the Fas-FasL pathway may prove beneficial in the treatment of diabetic retinopathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据