4.7 Article

Kinetics and mechanisms of ultrasonic degradation of volatile chlorinated aromatics in aqueous solutions

期刊

ULTRASONICS SONOCHEMISTRY
卷 9, 期 6, 页码 317-323

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S1350-4177(02)00085-8

关键词

sonochemistry; chlorinated aromatics; volatiles; wastewater treatment

向作者/读者索取更多资源

Ultrasonic decompositions of chlorobenzene (ClBz), 1,4-dichlorobenzene and 1-chloronaphthalene were investigated at 500 kHz in order to gain insight into the kinetics and mechanisms of the decomposition process. The disappearance of ClBz oil sonication is almost simultaneously accompanied by the release of chloride ions as a result of the rapid cleavage of carbon-chlorine bonds with a concomitant release of CO, C2H2, CH4 and CO2. The intermediates resulting from attack of HO. radicals were detected but in a quite low yield (less than 2 muM). The generation of H2O2 on sonolysis is not significantly affected by the presence of aqueous ClBz while the generation of NO2 and NO3 is inhibited initially due to the presence of ClBz which diffuses into the gas-bubble interfaces and inhibits the interactions between free radicals and nitrogen. Moreover, brown carbonaceous particles are present throughout the ultrasonic irradiation process, which are consistent with soot formation under pyrolytic conditions. These important features suggest that, at the relatively high initial substrate concentrations used in this study, ultrasonic degradation of ClBz takes place predominantly both within the bubbles and within the liquid-gas interfaces of bubbles where it undergoes high-temperature combustion. Under these conditions, the oxidation of ClBz by free radical HO. outside of bubbles is a minor factor (though results of recent studies suggest that attack by HO. is more important at lower initial substrate concentrations). The sonochernical decomposition of volatiles follows pseudo-first-order reaction kinetics but the degradation rates are affected by operating conditions, particularly initial substrate concentration and ultrasonic intensity. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据