4.4 Article

Acute and prolonged reduction in joint stiffness in humans after exhausting stretch-shortening cycle exercise

期刊

EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
卷 88, 期 1-2, 页码 107-116

出版社

SPRINGER
DOI: 10.1007/s00421-002-0669-2

关键词

jointstiffness; stretch-shortening cycle; central fatigue; peripheral fatigue; muscle damage

向作者/读者索取更多资源

The purpose of the present study was to examine the acute and long-term fatigue effects of exhausting stretch-shortening cycle (SSC) exercise on the stiffness of ankle and knee joints. Five subjects were fatigued on a sledge apparatus by 100 maximal rebound jumps followed by continuous submaximal jumping until complete exhaustion. Neuromuscular fatigue effects were examined in submaximal hopping (HOP) and in maximal drop jumps (DJ) from 35 (DJ35) and 55 cm (DJ55) heights on a force plate. Additional force and reflex measurements were made using an ankle ergometer. Jumping tests and ankle ergometer tests were carried out before, immediately after, 2 h (2H), 2 days and 7 days (713) after the SSC exercise. Kinematics, force and electromyography (EMG) recordings were complemented with inverse dynamics, which was used to calculate joint moments. The quotient of changes in joint moment divided by changes in joint angle was used as a value of joint stiffness (JS). In addition, blood lactate concentrations and serum creatine kinase activities were determined. The exercise induced a clear decrease in knee joint stiffness by [mean (SD)] 29 (13)% (P < 0.05) in HOP, 31 (6)% (P < 0.05) in DJ35 and 34 (14)% (P < 0.05) in DJ55. A similar trend was observed in the ankle joint stiffness with significant post-exercise reductions of 22 (8)% (P < 0.05) in DJ35 and of 27 (19)% (P < 0.05) at 2H in DJ55. The subsequent recovery of JS was slow and in some cases incomplete still at 7D. Generally, all the EMG parameters were fully recovered by 2H, whereas the force recovery was still incomplete at this time. These data indicate that the immediate reduction in JS was probably related to the effects of both central (neural) and peripheral (metabolic) fatigue, whereas the prolonged impairment was probably due to peripheral fatigue (muscle damage).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据