4.3 Article

Developmental changes in inhibitory effects of arsenic and heat shock on growth of pre-implantation bovine embryos

期刊

MOLECULAR REPRODUCTION AND DEVELOPMENT
卷 63, 期 3, 页码 335-340

出版社

WILEY-LISS
DOI: 10.1002/mrd.90017

关键词

embryo; bovine; heat shock; arsenic; apoptosis

向作者/读者索取更多资源

Although sensitive to various disrupters, pre-implantation embryos possess some cellular cytoprotective mechanisms that allow continued survival in the face of a deleterious environment. For stresses such as heat shock, embryonic resistance increases as development proceeds. Present objectives were to determine whether (1) arsenic compromises development of pre-implantation bovine embryos, (2) developmental changes in embryonic resistance to arsenic mimic those seen for resistance to heat shock, and (3) developmental patterns in induction of apoptosis by arsenic are correlated with similar changes in resistance of embryos to inhibitory effects of arsenic on development. Bovine embryos produced by in vitro fertilization were exposed at the two-cell stage or at day 5 after insemination (embryos greater than or equal to16-cells in number) to either sodium arsenite (0, 1, 5, or 10 muM) or heat shock (exposure to 41degreesC for 0, 3, 4.5, 6, or 9 hr). Arsenic induced apoptosis and increased group 2 caspase activity for embryos at the greater than or equal to16-cell stage, but not for embryos at the two-cell stage. In contrast to these developmental changes in apoptosis responses, exposure to arsenic reduced cell number 24 hr after exposure for both two-cell embryos and embryos greater than or equal to16-cells. Similarly, the percentage of embryos that developed to the blastocyst stage at day 8 after fertilization was reduced by arsenic exposure at both stages of development. Heat shock, conversely, reduced development to the blastocyst stage when applied at the two-cell stage, but not when applied to embryos greater than or equal to16-cells at day 5 after insemination. In conclusion, arsenic can compromise development of bovine pre-implantation embryos, the temporal window of sensitivity of embryos to arsenic is wider than for heat shock, and cellular cytoprotective responses that embryos acquire for thermal resistance are not sufficient to cause increased embryonic resistance to arsenic exposure. It is likely that despite common cellular pathologies caused by arsenic and heat shock, arsenic acts to reduce development in part through biochemical pathways not activated by heat shock. Moreover, the embryo does not acquire significant resistance to these perturbations within the time frame in development examined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据