4.7 Article

Stomatal responses of Douglas-fir seedlings to elevated carbon dioxide and temperature during the third and fourth years of exposure

期刊

PLANT CELL AND ENVIRONMENT
卷 25, 期 11, 页码 1411-1421

出版社

WILEY
DOI: 10.1046/j.1365-3040.2002.00923.x

关键词

Pseudotsuga menziesii; climate change; Douglas-fir; elevated CO2; leaf water relations; photosynthesis; seasonal patterns; stomatal conductance; temperature; transpiration

向作者/读者索取更多资源

Two major components of climate change, increasing atmospheric [CO2] and increasing temperature, may substantially alter the effects of water availability to plants through effects on the rate of water loss from leaves. We examined the interactive effects of elevated [CO2] and temperature on seasonal patterns of stomatal conductance (g(s)), transpiration (E) and instantaneous transpiration efficiency (ITE) in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. Seedlings were grown in sunlit chambers at either ambient CO2 (AC) or ambient + 180 mum mol mol(-1) CO2 (EC), and at ambient temperature (AT) or ambient + 3.5 degreesC (ET) in a full-factorial design. Needle gas exchange at the target growth conditions was measured approximately monthly over 21 months. Across the study period and across temperature treatments, growth in elevated [CO2] decreased E by an average of 12% and increased ITE by an average of 46%. The absolute reduction of E associated with elevated [CO2] significantly increased with seasonal increases in the needle-to-air vapour pressure deficit (D). Across CO2 treatments, growth in elevated temperature increased E an average of 37%, and did not affect ITE. Combined, growth in elevated [CO2] and elevated temperature increased E an average of 19% compared with the ACAT treatment. The CO2 supply and growth temperature did not significantly affect stomatal sensitivity to D or the relationship between gs and net photosynthetic rates. This study suggests that elevated [CO2] may not completely ameliorate the effect of elevated temperature on E, and that climate change may substantially alter needle-level water loss and water use efficiency of Douglas-fir seedlings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据