4.6 Article

Neuroprotective and neurotoxic properties of the 'inert' gas, xenon

期刊

BRITISH JOURNAL OF ANAESTHESIA
卷 89, 期 5, 页码 739-746

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bja/aef258

关键词

anaesthetics gases, nitrous oxide; anaesthetics gases, xenon; anaesthetics i.v., ketamine; brain, arcuade nucleus; brain, posterior cingulate and retrosplenial cortices; protein, c-Fos

向作者/读者索取更多资源

Background. Antagonists of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors have been shown not only to have neuroprotective effects but also to exhibit neurotoxic properties. In this study, we used c-Fos, a protein product of an immediate early gene, as a marker of neuronal injury to compare the neuroprotective effects of xenon and the neurotoxic properties of xenon, nitrous oxide, and ketamine, three anaesthetics with NMDA receptor antagonist properties. Methods. We used an in vivo rat model of brain injury in which N-methyl-DL-aspartic acid (NMA) is injected subcutaneously (s.c.) and c-Fos expression in the arcuate nucleus is used as a measure of injury. To examine the neurotoxic potential of each of the three anaesthetics with NMDA receptor antagonist properties, c-Fos expression in the posterior cingulate and retrosplenial (PC/RS) cortices was measured. Results. Xenon dose-dependently suppressed NMA-induced c-Fos expression in the arcuate nucleus with an IC50 of 47 (2)% atm. At the highest concentration tested (75% atm) NMA-induced neuronal injury was decreased by as much as that observed with the prototypical NMDA antagonist MK801 (0.5 mg kg(-1) s.c.). Both nitrous oxide and ketamine dose-dependently increased c-Fos expression in PC/RS cortices; in contrast, xenon produced no significant effect. If the dopamine receptor antagonist haloperidol was given before either nitrous oxide or ketamine, their neurotoxic effects were eliminated. Conclusions. Uniquely amongst anaesthetics with known NMDA receptor antagonist action, xenon exhibits neuroprotective properties without co-existing neurotoxicity. The reason why ketamine and nitrous oxide, but not xenon, produce neurotoxicity may involve their actions on dopaminergic pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据