3.8 Article

Molecular cloning of columbamine O-methyltransferase from cultured Coptis japonica cells

期刊

EUROPEAN JOURNAL OF BIOCHEMISTRY
卷 269, 期 22, 页码 5659-5667

出版社

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1432-1033.2002.03275.x

关键词

alkaloid biosynthesis; methyltransferase; Coptis japonica; palmatine; columbamine

向作者/读者索取更多资源

To identify all of the O-methyltransferase genes involved in isoquinoline alkaloid biosynthesis in Coptis japonica cells, we sequenced 1014 cDNA clones isolated from high-alkaloid-producing cultured cells of C. japonica. Among them, we found all three reported O-methyltransferases and an O-methyltransferase-like cDNA clone (CJEST64). This cDNA was quite similar to S-adenosyl-L-methionine: coclaurine 6-O-methyltransferase and S-adenosyl-L-methionine:isoflavone 7-O-methyltransferase. As S-adenosyl-L-methionine: columbamine O-methyltransferase, which catalyzes the conversion of columbamine to palmatine, is one of the remaining unelucidated components in isoquinoline alkaloid biosynthesis in C. japonica, we heterologously expressed the protein in Escherichia coli and examined the activity of columbamine O-methyltransferase. The recombinant protein clearly showed O-methylation activity using columbamine, as well as (S)-tetrahydrocolumbamine, (S)-, (R,S)-scoulerine and (R,S)-2,3,9,10-tetrahydroxyprotoberberine as substrates. This result clearly indicated that EST analysis was useful for isolating the candidate gene in a relatively well-characterized biosynthetic pathway. The relationship between the structure and substrate recognition of the O-methyltransferases involved in isoquinoline alkaloid biosynthesis, and a reconsideration of the biosynthetic pathway to palmatine are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据