4.7 Article

Capillary condensation of nitrogen in MCM-41 and SBA-15

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 117, 期 17, 页码 8036-8041

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1510440

关键词

-

向作者/读者索取更多资源

We performed measurements of a series of adsorption-desorption isotherms of nitrogen into MCM-41 and SBA-15 mesoporous molecular sieves with different pore sizes in a wide temperature range between a bulk triple point (T-t) and a bulk critical point (T-c). The hysteresis loop shrinks with increasing temperature and eventually disappears at the hysteresis critical temperature (T-ch), in accord with the appearance of metastable states in a single pore. We estimated the exact pore sizes of our samples from comparing the experimental equilibrium pressure at 77 K with the NLDFT isotherms, where the condensation pressures at 77 K were determined by extrapolating a plot of the equilibrium pressure versus temperature measured above T-ch. The pore critical temperature (T-cp) was also determined from the inflection point in a plot of the inverse slope of the adsorption step against temperature. T-ch is always lower than T-cp. Both plots of (T-c-T-ch)/T-c versus d/r(p) and (T-c-T-cp)/T-c versus d/r(p) form straight lines passing through the origin, where d is the molecular diameter, although the former plot deviate from the linear relationship at large pores; T-ch approaches T-cp in large pores. This strongly suggests that in large pores the energy barrier from the metastable state to the stable state is too large to be overcome within the period of observations even at the high temperatures just below T-cp. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据