4.6 Article

Retention of soluble organic nutrients by a forested ecosystem

期刊

BIOGEOCHEMISTRY
卷 61, 期 2, 页码 135-171

出版社

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1020239112586

关键词

adsorption; biodegradation; carbon; decomposition; dissolved organic nitrogen; flux; hydrology; organic matter; phosphorus; soil; stream

向作者/读者索取更多资源

We document an example of a forested watershed at the Coweeta Hydrologic Laboratory with an extraordinary tendency to retain dissolved organic matter (DOM) generated in large quantities within the ecosystem. Our objectives were to determine fluxes of dissolved organic C, N, and P (DOC, DON, DOP, respectively), in water draining through each stratum of the ecosystem and synthesize information on the physicochemical, biological and hydrologic factors leading to retention of dissolved organic nutrients in this ecosystem. The ecosystem retained 99.3, 97.3, and 99.0% of water soluble organic C, N and P, respectively, produced in litterfall, throughfall, and root exudates. Exports in streamwater were 4.1 kg ha(-1) yr(-1) of DOC, 0.191 kg ha(-1) yr(-1) of DON, and 0.011 kg ha(-1) yr(-1) of DOP. Fluxes of DON were greater than those of inorganic N in all strata. Most DOC, DON, and DOP was removed from solution in the A and B horizons, with DOC being rapidly adsorbed to Fe and Al oxyhydroxides, most likely by ligand exchange. DON and DOC were released gradually from the forest floor over the year. Water soluble organic C produced in litterfall and throughfall had a disjoint distribution of half-decay times with very labile and very refractory fractions so that most labile DOC was decomposed before being leached into the mineral soil and refractory fractions dominated the DOC transported through the ecosystem. We hypothesize that this watershed retained soluble organic nutrients to an extraordinary degree because the soils have very high contents of Fe and Al oxyhydroxides with high adsorption capacities and because the predominant hydrologic pathway is downwards as unsaturated flow through a strongly adsorbing A and B horizon. The well recognized retention mechanisms for inorganic nutrients combine with adsorption of DOM and hydrologic pathway to efficiently prevent leaching of both soluble inorganic and organic nutrients in this watershed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据