4.7 Article

A halide free route to the manufacture of microstructurally improved M ferrite (BaFe12O19 and SrFe12O19)fibres

期刊

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
卷 22, 期 12, 页码 2039-2045

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0955-2219(01)00518-0

关键词

BaFe12O19; fibres; magnetic properties; microstructure; sol-gel processes; SrFe12O19

向作者/读者索取更多资源

In hexagonal ferrite precursor fibres halide was found to be retained up to high temperatures, delaying the formation of the BaM (BaFe12O19) and SrM (SrFe12O19) phases, and resulting in a product with a grain size of 0.5 1 gm. This paper reports a halide free route for these fibres, using a nitrate stabilised sol precursor, from which the M phases formed at lower temperatures with smaller grain sizes. This sol was characterised and compared to the halide based sol, the evolution of the crystalline phases was studied and the hysteresis loops of the M ferrite fibres assessed by VSM. It was shown that retained halide inhibited the formation of the ferrite phase, as both SrM and BaM formed at a temperature 200degreesC lower than in the halide containing precursor fibres. The grain sizes were accordingly lower, the SrM grains being below 100 nm, although the crystallite sizes were only slightly smaller than those reported for the halide containing fibres fired to 1000degreesC, and the magnetic properties were also similar. The BaM fibres had M-s = 5 8.4 kA m(2) g(-1) and H-c = 401 kA m(-1), while the SrM fibres had M-s = 65.0 kA m(2) g(-1) and H-c = 440 kA m(-1), comparable to small grained polycrystalline powdered samples. The M ferrite phase was formed directly from haematite, with no BaFe2O4 observed as an intermediate, and the pure ferrites were made from stoichiometric precursors. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据