4.6 Article

Widespread N-acetyl-D-glucosamine uptake among pelagic marine bacteria and its ecological implications

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 68, 期 11, 页码 5554-5562

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.68.11.5554-5562.2002

关键词

-

资金

  1. NIAID NIH HHS [R01 AI046600, R01 AI46600] Funding Source: Medline

向作者/读者索取更多资源

Dissolved free and combined N-acetyl-D-glucosamine (NAG) is among the largest pools of amino sugars in the ocean. NAG is a main structural component in chitin and a substantial constituent of bacterial peptidoglycan and lipopolysaccharides. We studied the distribution and kinetics of NAG uptake by the phosphoenolpyruvate:NAG phosphotransferase systems (PTS) in marine bacterial isolates and natural bacterial assemblages in near-shore waters. Of 78 bacterial isolates examined, 60 took up H-3-NAG, while 18 showed no uptake. No systematic pattern in NAG uptake capability relative to phylogenetic affiliation was found, except that all isolates within Vibrionaceae took up NAG. Among 12 isolates, some showed large differences in the relationship between polymer hydrolysis (measured as chitobiase activity) and uptake of the NAG, the hydrolysis product. Pool turnover time and estimated maximum ambient concentration of dissolved NAG in samples off Scripps Pier (La Jolla, Calif.) were 5.9 +/- 3.0 days (n = 10) and 5.2 +/- 0.9 nM (n = 3), respectively. Carbohydrate competition experiments indicated that glucose, glucosamine, mannose, and fructose were taken up by the same system as NAG. Sensitivity to the antibiotic and NAG structural analog streptozotocin (STZ) was developed into a culture-independent approach, which demonstrated that approximately one-third of bacteria in natural marine assemblages that were synthesizing DNA took up NAG. Isolates possessing a NAG PTS system were found to be predominantly facultative anaerobes. These results suggest the hypothesis that a substantial fraction of bacteria in natural pelagic assemblages are facultative anaerobes. The adaptive value of fermentative metabolism in the pelagic environment is potentially significant, e.g., to bacteria colonizing microenvironments such as marine snow that may experience periodic O-2-limitation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据