4.7 Article

Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics

期刊

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
卷 46, 期 11, 页码 3348-3355

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.46.11.3348-3355.2002

关键词

-

资金

  1. NIAID NIH HHS [AI49174, R21 AI049174, R01 AI049174] Funding Source: Medline

向作者/读者索取更多资源

Mycothiol (MSH; 1D-myo-inosityl 2-[N-acetyl-L-cysteinyl]amido-2-deoxy-alpha-D-glucopyranoside) is the major low-molecular-weight thiol produced by mycobacteria. Mutants of Mycobacterium smegmatis mc(2)155 deficient in MSH production were produced by chemical mutagenesis as well as by transposon mutagenesis. One chemical mutant (mutant 164) and two transposon mutants (mutants Tn1 and Tn2) stably deficient in MSH production were isolated by screening for reduced levels of MSH content. The MSH contents of transposon mutants Tn2 and Tn2 were found to be less than 0.1% that of the parent strain, and the MSH content of 164 was found to be 1 to 5% that of the parent strain. All three strains accumulated 1D-myo-inosityl 2-deoxy-alpha-D-glucopyranoside to levels 20- to 25-fold the level found in the parent strain. The cysteine:1D-myo-inosityl 2-amino-2-deoxy-alpha-D-glucopyranoside ligase (MshC) activities of the three mutant strains were less than or equal to2% that of the parent strain. Phenotypic analysis revealed that these MSH-deficient mutants possess increased susceptibilities to free radicals and alkylating agents and to a wide range of antibiotics including erythromycin, azithromycin, vancomycin, penicillin G, rifamycin, and rifampin. Conversely, the mutants possess at least 200-fold higher levels of resistance to isoniazid than the wild type. We mapped the mutation in the chemical mutant by sequencing the mshC gene and showed that a single amino acid substitution (L205P) is responsible for reduced MSH production and its associated phenotype. Our results demonstrate that there is a direct correlation between MSH depletion and enhanced sensitivity to toxins and antibiotics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据