4.5 Article

Ultrastructural transynaptic effects of unilateral cochlear ablation in the gerbil medial superior olive

期刊

HEARING RESEARCH
卷 173, 期 1-2, 页码 43-61

出版社

ELSEVIER
DOI: 10.1016/S0378-5955(02)00606-8

关键词

ultrastructure; auditory brainstem; cochlear ablation; synaptic plasticity

向作者/读者索取更多资源

This study investigated the long-term effects of unilateral hearing loss on the structure of synapses within the gerbil medial superior olivary (MSO) nuclei. Five animals had complete (surgical) left cochlear ablation at postnatal day 18. Previous studies have shown this to produce, within 3 days, significant transneuronal atrophy in the left dendritic field of both MSOs. Electron micrographs from sagittal ultrathin sections through the MSOs of the cochlear-ablated animals were compared to those from unoperated normals. Qualitatively, the ultrastructural features were similar. Most of the axodendritic terminals were R-type (round-type vesicles, putative excitatory) whereas, in the central part of the nucleus, predominated by neuron soma profiles, terminals of P- and F-type (pleomorphic- and flattened-type vesicles, putative inhibitory) were present in equal numbers with R-type terminals. F-type terminals were infrequent and occurred most around lateral parts of the MSO somata. These three types of terminals seen around the somata and proximal dendrites all had extended profiles with multiple, discontinuous appositions. Quantitative analysis revealed that R-type axodendritic terminals became smaller and less densely populated with vesicles where they synapsed onto the remaining dendrites arrayed towards the ablated side of both MSOs, and axosomatic P-type afferent terminals were smaller in the contralateral nuclei. A significant reduction in the number of terminals and synapses occurred in the central, somatic, region of the ipsilateral MSO. However, the terminal vesicle concentration in the remaining terminals increased. The results indicate that cochlear ablation can induce transynaptic reduction in the size of afferent axon terminals within the MSO, and alter their vesicle concentration. These changes are likely to affect the probability of transmitter release and thus influence their signaling power within the nucleus. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据