3.8 Article

Co-existence of two regulatory NADP-glyceraldehyde 3-P dehydrogenase complexes in higher plant chloroplasts

期刊

EUROPEAN JOURNAL OF BIOCHEMISTRY
卷 269, 期 22, 页码 5617-5624

出版社

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1432-1033.2002.03269.x

关键词

enzyme aggregation; light/dark regulation; NADP-glyceraldehyde 3-P dehydrogenase; phosphoribulokinase; spinach chloroplast

向作者/读者索取更多资源

Light/dark modulation of the higher plant Calvin-cycle enzymes phosphoribulokinase (PRK) and NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (NADP-GAPDH-A(2)B(2)) involves changes of their aggregation state in addition to redox changes of regulatory cysteines. Here we demonstrate that plants possess two different complexes containing the inactive forms (a) of NADP-GAPDH and PRK and (b) of only NADP-GAPDH, respectively, in darkened chloroplasts. While the 550-kDa PRK/GAPDH/CP12 complex is dissociated and activated upon reduction alone, activation and dissociation of the 600-kDa A(8)B(8) complex of NADP-GAPDH requires incubation with dithiothreitol and the effector 1,3-bisphosphoglycerate. In the light, PRK is therefore completely in its activated state under all conditions, even in low light, while GAPDH activation in the light is characterized by a two-step mechanism with 60-70% activation under most conditions in the light, and the activation of the remaining 30-40% occurring only when 1,3-bisphosphoglycerate levels are strongly increasing. In vitro studies with the purified components and coprecipitation experiments from fresh stroma using polyclonal antisera confirm the existence of these two aggregates. Isolated oxidized PRK alone does not reaggregate after it has been purified in its reduced form; only in the presence of both CP12 and purified NADP-GAPDH, some of the PRK reaggregates. Recombinant GapA/GapB constructs form the A(8)B(8) complex immediately upon expression in E. coli.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据