4.5 Article

Filamin A and Filamin B are co-expressed within neurons during periods of neuronal migration and can physically interact

期刊

HUMAN MOLECULAR GENETICS
卷 11, 期 23, 页码 2845-2854

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/11.23.2845

关键词

-

资金

  1. NHLBI NIH HHS [HL09163] Funding Source: Medline
  2. NIMH NIH HHS [K08 MH063886, 1K08MH/NS63886-01] Funding Source: Medline
  3. NINDS NIH HHS [1P01NS40043, 5R01 NS35129] Funding Source: Medline

向作者/读者索取更多资源

Mutations in the X-linked gene Filamin A (FLNA) lead to the human neurological disorder, periventricular heterotopia (PH). Although PH is characterized by a failure in neuronal migration into the cerebral cortex with consequent formation of nodules in the ventricular and subventricular zones, many neurons appear to migrate normally, even in males, suggesting compensatory mechanisms. Here we characterize expression patterns for FlnA and a highly homologous protein Filamin B (FlnB) within the nervous system, in order to better understand their potential roles in cortical development. FlnA mRNA was widely expressed in all cortical layers while FlnB mRNA was most highly expressed in the ventricular and subventricular zones during development. In adulthood, widespread but reduced expression of FlnA and FlnB persisted throughout the cerebral cortex. FlnA and FlnB proteins were highly expressed in both the leading processes and somata of migratory neurons during corticogenesis. Postnatally, FlnA immunoreactivity was largely localized to the cell body with FlnB in the soma and neuropil during neuronal differentiation. In adulthood, diminished expression of both proteins localized to the cell soma and nucleus. Moreover, the putative FLNB homodimerization domain strongly interacted with itself or the corresponding homologous region of FLNA by yeast two-hybrid interaction, the two proteins co-localized within neuronal precursors by immunocytochemistry and the existence of FLNA-FLNB heterodimers could be detected by co-immunoprecipitation. These results suggest that FLNA and FLNB may form both homodimers and heterodimers and that their interaction could potentially compensate for the loss of FLNA function during cortical development within PH individuals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据