4.6 Article

Chemodynamical evolution of the Milky Way disk II. Variations with Galactic radius and height above the disk plane

期刊

ASTRONOMY & ASTROPHYSICS
卷 572, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201423487

关键词

Galaxy: kinematics and dynamics; galaxies: evolution; Galaxy: abundances; Galaxy: formation; Galaxy: evolution; Galaxy: disk

向作者/读者索取更多资源

In the first paper of this series (Paper I) we presented a new approach for studying the chemodynamical evolution in disk galaxies, focusing on the Milky Way. While in Paper I we studied extensively the Solar vicinity, here we extend these results to different distances from the Galactic center, looking for variations of observables that can be related to on-going and future spectroscopic surveys. By separating the effects of kinematic heating and radial migration, we show that migration is much more important, even for the oldest and hottest stellar population. The distributions of stellar birth guiding radii and final guiding radii (signifying contamination from migration and heating, respectively) widen with increasing distance from the Galactic center. As a result, the slope in the age-metallicity relation flattens significantly at Galactic radii larger than solar. We predict that the metallicity distributions of (unbiased) samples at different distances from the Galactic center peak at approximately the same value, [Fe/H] approximate to -0.15 dex, and have similar metal-poor tails extending to [Fe/H] approximate to -1.3 dex. In contrast, the metal-rich tail decreases with increasing radius, thus giving rise to the expected decline of mean metallicity with radius. Similarly, the [Mg/Fe] distribution always peaks at approximate to 0.15 dex, but its low-end tail is lost as radius increases, while the high-end diminishes at [Mg/Fe] approximate to 0.45 dex. The radial metallicity and [Mg/Fe] gradients in our model show significant variations with height above the plane because of changes in the mixture of stellar ages. An inversion in the radial metallicity gradient is found from negative to weakly positive (at r < 10 kpc), and from positive to negative for the [Mg/Fe] gradient, with increasing distance from the disk plane. We relate this to the combined effect of (i) the predominance of young stars close to the disk plane and old stars away from it; (ii) the more concentrated older stellar component; and (iii) the flaring of mono-age disk populations. We also investigate the effect of recycled gas flows on the mean [Fe/H] and find that in the region 4 < r < 12 kpc the introduced errors are less than 0.05-0.1 dex, related to the fact that inward and outward flows mostly cancel in that radial range. We show that radial migration cannot compete with the inside-out formation of the disk, exposed by the more centrally concentrated older disk populations, and consistent with recent observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据