4.6 Article

Skycorr: A general tool for spectroscopic sky subtraction

期刊

ASTRONOMY & ASTROPHYSICS
卷 567, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201423908

关键词

atmospheric effects; radiation mechanisms: non-thermal; instrumentation: spectrographs; methods: data analysis; methods: numerical; techniques: spectroscopic

资金

  1. BM:wf [BMWF-10.490/0009-II/10/2009, BMWF-10.490/0008-II/3/2011]
  2. Austrian Science Fund (FWF) [P26130]
  3. Austrian Ministry for Research (bmwfw) [IS538003]
  4. Austrian Science Fund (FWF) [P 26130] Funding Source: researchfish

向作者/读者索取更多资源

Context. Airglow emission lines, which dominate the optical-to-near-infrared sky radiation, show strong, line-dependent variability on time scales from minutes to decades. Therefore, the subtraction of the sky background in the affected wavelength regime becomes a problem if plain-sky spectra have to be taken at a different time from the astronomical data. Aims. A solution of this problem is the physically motivated scaling of the airglow lines in the plain-sky data to fit the sky lines in the object spectrum. We have developed a corresponding instrument-independent approach based on one-dimensional spectra. Methods. Our code skycorr separates sky lines and sky/object continuum by an iterative approach involving a line finder and airglow line data. The sky lines, which mainly belong to OH and O-2 bands, are grouped according to their expected variability. The line groups in the sky data are then scaled to fit the sky in the science data. Required pixel-specific weights for overlapping groups are taken from a comprehensive airglow model. Deviations in the wavelength calibration are corrected for by fitting Chebyshev polynomials and rebinning via asymmetric damped sinc kernels. The scaled sky lines and the sky continuum are subtracted separately. Results. ESO-VLT X-shooter data covering 2.5 h with a good time resolution were selected to illustrate the performance. Data taken six nights and about one year before were also used as reference sky data. The variation of the sky-subtraction quality as a function of time difference between the object and sky data depends on changes in the airglow intensity, atmospheric transparency, and instrument calibration. Except for short time intervals of a few minutes, the sky line residuals were between 2.1 and 5.5 times weaker than for sky subtraction without fitting. Additional tests showed that skycorr performs consistently better than the method of Davies (2007, MNRAS, 375, 1099) developed for ESO-VLT SINFONI data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据