4.6 Article

Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrodinger equation

期刊

PHYSICAL REVIEW A
卷 66, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.66.053619

关键词

-

向作者/读者索取更多资源

Using a set of general methods developed by Krotov [A. I. Konnov and V. A. Krotov, Automation and Remote Control 60, 1427 (1999)], we extend the capabilities of optimal control theory to the nonlinear Schrodinger equation (NLSE). The paper begins with a general review of the Krotov approach to optimization. Although the linearized version of the method is sufficient for the linear Schrodinger equation, the full flexibility of the general method is required for treatment of the nonlinear Schrodinger equation. Formal equations for the optimization of the NLSE, as well as a concrete algorithm are presented. As an illustration, we consider a Bose-Einstein condensate (BEC) initially at rest in a harmonic trap. A phase develops across the BEC when an optical lattice potential is turned on. The goal is to counter this effect and keep the phase flat by adjusting the trap strength. The problem is formulated in the language of optimal control theory (OCT) and solved using the above methodology. To our knowledge, this is the first rigorous application of OCT to the nonlinear Schrodinger equation, a capability that is bound to have numerous other applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据